Por otra parte, la teoría general de la relatividad de Einstein predijo hace casi 100 años que el tiempo fluye más lento a medida que aumenta la gravedad. Los satélites se encuentran a una altura en que la gravedad es muy pequeña en comparación con su valor en la superficie de la Tierra. En este caso un reloj en el satélite tenderá a adelantarse con respecto al situado en la Tierra. O sea que en la superficie de la Tierra el tiempo fluye más despacio que en el satélite. El efecto se ilustra en la Figura 5. La corrección supone que la gravedad es despreciable en la órbita del satélite en comparación con la gravedad en el receptor. Para mayor exactitud se debe aplicar la fórmula dos veces, una para el radio de la Tierra y la otra para el radio de la órbita y luego tomar la diferencia de tiempos. A la variable rS se le conoce como radio de Schwarzschild. Si un objeto esférico de masa m tiene un radio menor al radio de Schwarzschild entonces ese objeto debe ser un hoyo negro. Allá el tiempo se detiene. La Tierra está muy lejos de ser un hoyo negro porque su radio de 6,370 km es mucho mayor que el radio de Schwarzschild que le corresponde por su masa.
Figura 5. Corrección relativista (general) del intervalo de tiempo. rS se conoce como radio de Schwarzschild y rT es el radio de la Tierra. G es la constante de gravitación de Newton, m la masa de la Tierra y c la velocidad de la luz. Esta corrección es mayor que la de la Figura 4.
Los relojes que son muy, muy exactos son también muy, muy caros. Cuestan mucho más que un automóvil de lujo. Y sin embargo, muchos automóviles y teléfonos celulares comunes tienen instalados receptores GPS. Como recordarán, todos los relojes deben ser igualmente exactos para que las distancias sean las correctas. ¿Cómo resolvieron este problema los diseñadores del sistema? Lo resolvieron de una manera muy ingeniosa que permite el equivalente de tener millones de relojes muy exactos en tierra aunque en realidad no lo sean tanto. Alguien tuvo la idea de utilizar la señal de un cuarto satélite y así tener una cuarta ecuación (ver la Figura 1). El tiempo entra como incógnita y se calcula junto con las coordenadas espaciales. Esto además permite sincronizar el reloj del receptor GPS. ¿Resultado? Coordenadas correctas y millones de relojes no muy buenos convertidos en muy, muy buenos, tan buenos como los que están en los satélites.
LOCALIZACIÓN DE SISMOS Y SU MAGNITUD EN LA ESCALA DE RICHTER
En el caso de celulares y GPS los puntos de referencia emiten una señal y el receptor es el objeto cuya posición se desconoce. En el caso de los sismos las cosas están al revés. Los puntos de referencia son los receptores, y el transmisor de la señal es el objeto cuya posición se desconoce. Esto es, el sismo produce la señal y las estaciones de registro la reciben y de alguna manera se coordinan y se calcula el lugar de origen. Una dificultad adicional en el presente caso es que no se sabe ni dónde ni cuándo ocurrió el sismo. Lo único que se tiene son los registros en las estaciones de medición. Es como si en el receptor GPS sólo se tuviera el tiempo de llegada de la señal, sin el aviso de los satélites de cuándo la enviaron. O sea que no se puede tomar la diferencia de tiempos y calcular las distancias y hacer los círculos correspondientes.
Afortunadamente en el caso de los sismos los registros muestran el arribo de dos tipos de onda, una rápida y otra más lenta. La más rápida llega primero a cualquiera de las estaciones (onda P), y la más lenta por supuesto que un poco después (onda S), según se ilustra en la Figura 6.
Figura 6. Esbozo de sismograma real. Tiempo cero es artificialmente asignado a la llegada de la onda P para facilitar el cálculo del tiempo S-P.
El tiempo de arribo de la onda S es mayor y el de la onda P es menor. Esto se ilustra en la Figura 7 para valores típicos de velocidades en la corteza terrestre. En esta figura también se grafica la diferencia de tiempos S-P. Se puede observar que la diferencia entre los tiempos de arribo de las ondas S y P se incrementa con la distancia entre el sismo y la estación, y que dada una diferencia de tiempos identifica una única distancia. Esto significa que con tres estaciones se pueden identificar tres distancias, y con esas tres distancias se puede aplicar trilateración y ubicar la posición del sismo en relación con las estaciones. La existencia de estos dos tipos de onda hace innecesario saber cuándo ocurrió el sismo, o en el caso de GPS, cuándo se emitió la señal.
Figura 7. Tiempo de viaje de las ondas P y S en la corteza terrestre desde el origen de un sismo (Distancia=0) hasta estaciones distantes. Las ondas se propagan en todas direcciones por lo que sólo se grafica la distancia a la estación.
Continúa en la página 4.